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PREFACE

This volume of Advances in Organic Synthesis presents some recent exciting developments
in synthetic organic chemistry. It covers a range of topics including important researches on
novel approaches to the construction of complex organic compounds. The chapters are written
by  authorities  in  the  field  and  are  mainly  focused  on  asymmetric  hydrogenation  of
tetrasubstituted olefins, catalytic organic synthesis, applications of covalently supported ionic
liquids,  intramolecular  cyclization  reactions  via  carbon-heteroatom (C-X) bond formation,
quinazoline analogues and their biological importance, and synthesis of N,O,S-heterocycles
by one-pot reactions of epoxides, aziridines and oxaziridines.

The  book  should  prove  to  be  a  valuable  resource  for  pharmaceutical  scientists  and
postgraduate students seeking updated and critically important information about synthetic
organic  chemistry.  I  hope  that  the  readers  will  find  these  reviews  valuable  and  thought-
provoking so that they may trigger further research in the quest for new developments in the
field.

I am thankful to the efficient team of Bentham Science Publishers especially Dr. Faryal Sami
(Assistant  Manager),  Mr.  Shehzad  Naqvi  (Senior  Manager)  and  Mr.  Mahmood  Alam
(Director  Publications).

Prof. Dr. Atta-ur-Rahman, FRS
Honorary Life Fellow

Kings College
University of Cambridge

Cambridge
UK
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CHAPTER 3

Recent  Developments  in  Intramolecular
Cyclization  Reactions  via  Carbon-heteroatom  (C-
X)  Bond Formation
Vishu Mehra1, Isha Lumb2 and Vipan Kumar3,*

1 Department of Chemistry, Hindu College, Amritsar-143001, India
2 Department of Chemistry, Baring Union Christian College, Batala-143505, India
3 Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India

Abstract: The overwhelming potential of heterocyclic compounds in pharmaceutical
sector  continuously  demands  the  development  of  new  synthetic  approaches.  The
beginning  of  19th  century  witnessed  an  era  of  development  of  various  condensation
reactions for  the development of  new heterocyclic  scaffolds.  Most  of  the developed
classical reactions still hold great value while the field is inundated in 21st century with
the  advent  of  catalysis.  The  activation  of  unsaturated  functionalities  of  acyclic
compounds to undergo intramolecular cyclization via  metal catalyzed approaches or
the  transformation  of  azetidin-2-ones  to  functionally  enriched  compounds  have
occupied  a  prominent  place  in  heterocyclic  synthesis.

Keywords:  Aza-Michael  Addition,  Biological  Activities,  β-Amino  Ester,  β-
Lactam-Synthon  Protocol,  Cross-Dehydrogenative-Coupling,  Cyclo-
Isomerisation,  Cycloaddition,  Diastereoselective,  Enatioselective,  Enatiomeric
Excess,  Fries  Rearrangement,  Heterocycles,  Intramolecular  Amidolysis,
Intermolecular Amidolysis, Intramolecular Cyclization, Intramolecular Ullmann,
Metal-Catalyzed Reactions, Photocatalyst.

INTRODUCTION

Heterocyclic  compounds  have  received  the  attention  of  synthetic  chemists
worldwide  because  of  their  enormous  potential  in  medicinal  chemistry  and
pharmaceutical  applications  [1].  In  particular,  natural  products,  drugs,  and
renewable resources having heterocyclic moieties are essential  because of their
manifold  properties  [2].  The  commercially  available  drugs  such  as  Penicillin
(antibiotic),   cyclosporine   (immunosuppressant),   azidothymidine   (HIV),   and

* Corresponding author Vipan Kumar: Department of Chemistry, Guru Nanak Dev University, Amritsar-143005,
Punjab, India. Fax: +91-183-2258819-20; Tel: +91-183-2258802extn. 3286; E-mail: vipan_org@yahoo.com

Atta-ur-Rahman (Ed.)
All rights reserved-© 2018 Bentham Science Publishers
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sofusbuvir  (hepatitis  C)  have  overwhelming  prevalence  of  heterocyclic  motif
which changed the world for the better, and it is estimated that these antibiotics
alone have increased the life expectancy up to 10 years [3]. The major advances in
synthetic medicinal chemistry is focused on the development of new strategies for
the affording heterocyclic compounds with biological relevance.

Over  the  years,  enormous  efforts  have  been  devoted  in  developing  synthetic
methodologies for the preparation of highly functionalized heterocycles. Metal-
catalyzed  intramolecular  addition  of  oxygen,  nitrogen  and  sulphur  nucleophile
across unsaturated carbon-carbon bond constitutes one such important synthetic
protocol [4]. Direct C-H bond activation with subsequent carbon-carbon (C-C) as
well  as  carbon-heteroatom  (C-X)  bond  formation  is  considered  of  primary
significance  in  organic  synthesis  [5].  Among  the  many  C-H  bond  activation
approaches,  catalytic  cross-dehydrogenative-coupling  (CDC)  reactions  are
considered  important  primarily  because  of  their  step-economical  property  [6].
Selective functionalization of C-H bonds next to a nitrogen atom using the CDC
approach has been explored for the synthesis of functionalized heterocycles [7].

Another important protocol for the construction of functionalized hetrocycles via
intramolecular C-N, C-O and C-S bond formation is termed as “β lactam synthon”
[8]. β-lactam (azetidin-2-one) ring is the central core of one of the most known
classes of antibiotics [9] and also an important pharmacophore for a range of other
bioactive  compounds.  Apart  from  their  significant  pharmacological  effects,  β-
lactams  also  serve  as  useful  intermediates  in  organic  synthesis  because  of  the
strain energy associated with the four-membered ring making it  susceptible for
nucleophilic  ring  cleavage.  The  selective  bond  cleavage  of  the  strained  ring
coupled  with  interesting  transformations  renders  this  fascinating  molecule  as  a
powerful building block for the synthesis of α and β-aminoacids, natural products
(taxoids),  alkaloids,  peptidomimetics  and  other  heterocyclic  rings  [10].  The
purpose  of  present  chapter  is  to  focus  on  various  intramolecular  (C-X)  bonds
forming  methodologies  reported  recently  (2011-2017)  for  the  synthesis  of
functionalized  heterocycles  with  particular  emphasis  on  β-lactam-synthon
protocol  and metal-catalyzed reactions.  For  convenience,  the present  chapter  is
divided into two sections viz. five and six membered heterocyclic scaffolds and
fused heterocyclic scaffolds with subsequent sub-sections.

FIVE AND SIX MEMBERED HETEROCYCLIC SCAFFOLDS

Five Membered Ring with One Hetero Atom

Pyrrolidine, Pyrole and Furan-based Scaffolds

Functionalized pyrrolidine esters are essential building blocks for various natural
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products and important pharmacophores due to their diverse biological activities
[11]. Enantiopure functionalized pyrrolidines also serve as organocatalysts, chiral
ligands,  as  well  as  chiral  auxiliaries.  Bhargava  et  al.  [12]  have  utilized  the  β-
lactam  synthon  protocol  for  the  synthesis  of  functionalized  pyrrolidine-2-
carboxylic  acid  methyl  esters  from C-3  functionalized  azetidin-2-one.  The  key
step  in  the  synthesis  involved  the  treatment  of  3-amino-azetidin-2-one  1  with
iodine/bromine in the presence of potassium carbonate resulting in intramolecular
ring  cyclization  yielding  4-halo-3-phenyl-6-aryl-2,6-diaza-bicyclo[3.2.0]heptan-
7-one  2.  The  amidolytic  ring  opening  reaction  of  2  with  sodium  methoxide  in
methanol  at  0°C  to  room  temperature  afforded  the  desired  4-halo-5-phenyl-3-
arylamino-pyrrolidine-2-carboxylic acid methyl ester (3) as depicted in (Scheme
1).

Scheme 1. Synthesis of pyrrolidine-2-carboxylic acid methyl ester 3.

Functionalized  γ-lactams  and  in  particular,  succinimide  and  pyroglutamic  acid
cores  have  emerged  as  scaffolds  of  considerable  importance  because  of  their
biological relevance [13]. Alcaide and co-workers [14] have recently disclosed the
utilization  of  β-lactam-α-aminonitriles  for  the  stereocontrolled  synthesis  of  γ-
lactams and succinimide derivatives. The use of sodium methoxide to affect these
transformations in case of 4a-c resulted in the isolation of corresponding amides
in good yields as depicted in (Scheme 2).

However,  5-(arylimino)  pyrrolidin-2-ones  (7d)  and  (7e)  were  formed  as  sole
products when 4d and 4e were employed as starting material. By contrast, the use
of (tert-butylamino) nitrile 4f as starting material afforded the acyclic γ-cyano-β-
aminoester (8) via N1-C2 bond cleavage. Probably, the steric hindrance of tert-
butyl group inhibited the intramolecular cyclization and explained the observed
behavior (Scheme 3).
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Scheme 2. Synthesis of γ-lactams and succinimide derivatives 5, 6 and 7.

Scheme 3. Synthesis of 5-(arylimino) pyrrolidin-2-ones 7d, 7e and γ-cyano-β-aminoester 8.
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The  isolation  of  different  products  in  methoxide  mediate  transformation  of  β-
lactam aminonitriles has shown to depend upon the nature of R3 substituent. The
presence  of  R3  as  aliphatic  substituent  facilitated  the  reaction  via  Path-A  i.e.
N1-C2 bond cleavage resulting in the formation of pyroglutamic acid derivatives.
The  introduction  of  R3  as  aromatic  substituent  suppressed  the  rearrangement
resulting  in  the  formation  of  5-(arylimino)  pyrrolidin-2-ones  (7)  via  Path-B
invoking  N1-C4  bond  cleavage  (Scheme  4).

Scheme 4. Mechanistic pathway for the formation of 5, 6, 7 and 8.

Pyrroles  are  key  heterocycles  having  wide  array  of  biological  activities.
Storniamide  A  for  examples  has  been  evaluated  against  multidrug  resistance
(MDR)  TB  whereas  Nakamuric  acid  and  marinopyrrole  A  and  B  have  shown
inhibitory activity against Staphylococcus aureus [15]. Numerous pyrrole-based
drugs  are  present  in  market  which  increases  the  significance  of  functionalized
pyrroles in heterocyclic synthesis [16]. Recently, Bhargava and co-workers [17]
described a facile route for the synthesis of 4-oxo-dihydro-1H-pyrrole via tandem
aza-Michael  addition  reactions  of  3-amino-azetidin-2-ones  1  with  different
acetylenic  esters  with  subsequent  intramolecular  amidolysis.  The  synthetic
approach involved the treatment of variedly substituted 3-amino-azetidin-2-ones 1
with substituted acetylenic esters 13  in polar aprotic solvent such as (DCE and
THF) resulting in the formation of 4-oxo-4,5-dihydro-1H-pyrrole ester (15) along
with its aza Michael adduct (14) as depicted in (Scheme 5).
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Scheme 5. Synthesis of 4-oxo-4,5-dihydro-1H-pyrrole ester 15.

Mechanistically, the reaction involves an initial nucleophilic attack of the amino
substituent of 1 at one of the acetylenic carbons of 13 results in intermediate 16,
which undergoes 1,3-sigmatropic shift to afford the aza-Michael adducts (14). 4-
oxo-5-(3-aryl-1-arylamino-allyl)-4,5-dihydro-1H-pyrrole  ester  (15)  is  probably
formed  by  nucleophilic  attack  of  the  carbanion,  at  the  carbonyl  carbon  of  the
azetidin-2-ones as depicted in (Scheme 6).

Scheme 6. Mechanistic pathway for the formation of 14 and 15.
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A convenient protocol for the diastereoselective synthesis of methyl cis-3-amino
tetrahydro  furan-2-carboxylates  [18]  has  been  developed  via  acid-promoted
amidolysis  of  tetrahydrofuran-β-lactams  20.  An  initial  deprotection  of  17  with
tert-butyl  ammonium  fluoride  (TBAF)  yielded  β-lactams  18  which  were
mesylated  to  result  in  cis-3-benzyloxy-4-(2-mesyloxyethyl)azetidin-2-ones  19.
The treatment of 19 with 20% (W/W) palladium on activated carbon afforded the
corresponding  cis-3-hydroxy-β-lactams  which  upon  NaH-promoted
intramolecular  cyclization  resulted  in  the  desired  cis-2-oxa-6-azabicyclo[3.2.0]
heptan-7-ones  20  in  good  yields.  The  N1-C2  ring  cleavage  of  20  under  acidic
conditions  yielded  the  corresponding  methyl  cis-3-aminotetrahydrofura-
-2-carboxylates  (21)  as  shown  in  (Scheme  7).

Scheme 7. Synthesis of furan-2-carboxylates 21.

Five Membered Ring with Two Hetero Atoms

Azole-based Scaffolds

Oxazoles represent one of the most important pharmacophores due to their diverse
biological activities [19]. Chang et al. [20] have developed a facile route for the
synthesis of oxazole derivatives via copper(I)/amino acid catalyzed intramolecular
Ullmann-type  C-O  coupling  reaction.  The  synthetic  approach  involved  the
treatment  of  22  with  cesium  carbonate  (Cs2CO3)  in  1,4-dioxane  without  any
catalyst  or  ligand  to  result  in  the  formation  of  oxazoles  derivatives  (23)  in
moderate  yields.  Further  the inclusion of  copper(I)  iodide (CuI,  10 mol%) as  a
catalyst and a temperature of 90 °C significantly improved in the yield of product.
It has been found that the addition of N,N-dimethyl-glycine hydrochloride as the
ligand  in  copper-catalyzed  Ullman-type  reactions,  at  a  relatively  lower
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temperature (80 °C) afforded the desired oxazole 23  in good yield. (Scheme 8)
The effect of substituents on the aryl ring of the substrate was also studied. It has
been found that both electron-donating and electron-withdrawing groups on the
aryl ring smoothly gave the corresponding oxazoles derivatives (23) in good to
excellent yields.

Scheme 8. Synthesis of oxazoles derivatives 23.

To further examine the feasibility of above method, N-(2-bromo-3-oxocyclohex-
1-en-1-yl)  benzamide 24  was subjected to the intramolecular  cyclization which
afforded  the  synthesis  of  2-Phenyl-5,6-dihydro-4H-benzooxazol-7-one  (25)  in
good  yield  (Scheme  9).

Scheme 9. Synthesis of fused oxazoles 25.
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anti-depressant,  anti-HIV,  anti-angiogenic,  anti-convulsant,  sedative,  tyrosinase
inhibition, fungicidal and herbicidal properties [21]. Thus, Kumar and co-workers
[22]  recently  developed  the  route  for  the  synthesis  of  functionally  decorated
oxazol-5-ones via β-lactam synthon protocol. The synthetic protocol involved the
treatment  of  C-3  functionalized  N-acylated-azetidin-2-ones  26  with  potassium
tert-butoxide in dry DMF resulting in the synthesis of corresponding oxazolones
(27) as shown in (Scheme 10).

Scheme 10. Synthesis of oxazolones 27.

The  mechanism  of  the  reaction  is  thought  the  base-promoted  generation  of
alkoxide ion which underwent intramolecular nucleophilic addition to produce an
intermediate 28, which upon ring opening resulting into desired 2,5-disubstituted
oxazol-5-ones (27) as depicted in (Scheme 11).

Scheme 11. Mechanistic pathway for the formation of 27.
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sodium methoxide at 80 °C for 6h to afford the corresponding 1,2,4,5-substituted
dihydroimidazoles (29) as shown in (Scheme 12).

Scheme 12. Synthesis of 1,2,4,5-substituted dihydroimidazoles 29.

Mechanistically, the reaction involved an initial intramolecular amidolysis of 26
to  result  in  the  formation  of  corresponding  oxazol-5-ones  29  which  upon
methoxide-promoted  ring  opening  afforded  the  corresponding  ester  30.  The
aminoester  30  via  C-C  bond  rotation  resulted  in  another  intermediate  31  with
subsequent  loss  of  water  to  form  1,2,4,5-dihydroimidazole  (29)  as  shown  in
(Scheme  13).

Scheme 13. Mechanistic pathway for the formation of 29.
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Kumar et al. [24] have described the utility of β-lactam synthon protocol for the
synthesis  of  1,2,4,5-tetra-substituted  imidazoles  via  m-chloro-perbenzoic  acid
(m-CPBA)  promoted  tandem  Michael  addition-intramolecular  cyclization  of
functionalized 2-azido-β-amino esters. Thus refluxing of β-aminoesters 33 and 34
in  dry  chloroform  in  the  presence  of  m-CPBA  yielded  the  corresponding  1-
aryl/alkyl-2,5-distyryl-1H-imidazole-4-carboxylic acid methyl ester (35) as shown
in (Scheme 14).

Scheme 14. Synthesis of Imidazole-4-carboxylic acid methyl ester 35.

Mechanistically, the reaction is thought to proceed with an initial formation of N-
oxide  36  with  subsequent  Cope-elimination  to  yield  the  corresponding
2-azido-α,β-unsaturared  ester  37.  This  upon  Michael-addition  with  second
molecule  of  β-amino-ester  resulted  in  an  intermediate  39  which  undergoes
enolization and subsequent loss of a nitrogen molecule leading to the formation of
another imine-ester-intermediate 40 which may follow either Path-A or Path-B
as  depicted  in  (Scheme  15)  resulting  in  the  formation  of  corresponding  1-
aryl/alkyl-2,5-distyryl-1H-imidazole-4-carboxylic  acid  methyl  ester  (35).

Kumar and co-workers [25] have used β-lactam-synthon protocol for the synthesis
of  imidazolidin-2-ones 47.  The synthetic  methodology involved base promoted
ring  amidolysis  of  racemic  cis-3-amino-azetidin-2-ones  1  resulting  in
corresponding  cis-α-aminoesters  45  in  a  diastereoselective  manner  which  were
then reacted with phenyl chloroformate with subsequent heating in toluene in the
presence of p-toluene sulfonic acid affording diastereoselective access to 1,4,5-
trisubstituted trans-imidazolidin-2-ones (47) as shown in (Scheme 16).
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medicinal  and  agricultural  chemistry  with  wide  array  of  biological  properties.
Kumar et al. [26] have developed the route for the synthesis of thiohydantoin via
β-lactam synthon protocol. Thus, the room temperature stirring of azetidin-2-one
48 with sodium methoxide in dry methanol for 50-55 min interestingly led to the
formation  of  3-alkyl/aryl-5-(3-phenyl-allylidene)-2-thioxo-imidazolidin-4-ones
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(50)  in  good  to  excellent  yields  (Scheme  17).

Scheme 15. Mechanistic pathway for the formation of 35.
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Scheme 16. Synthesis of imidazolidin-2-ones 47.

Scheme 17. Synthesis of 3-alkyl/aryl-5-(3-phenyl-allylidene)-2-thioxo-imidazolidin-4-ones 50.
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intermediate 49 with subsequent β-elimination resulting in formation of 3-alkyl/
aryl-5-(3-phenyl-allylidene)-2-thioxo-imidazolidin-4-ones (50) (Scheme 18).

Scheme 18. Mechanistic pathway for the formation of 50.

Six Membered Ring with One Hetero Atom

Pyran-based Scaffolds

Pyrans  are  privileged  heterocyclic  structures  found  in  numerous  simple  and
sophisticated bioactive natural products [27]. 3,4-Dihydropyrans (3,4-DHP), for
example, are useful precursors for tetrahydropyrans, glycals, and typical building
blocks in carbohydrate chemistry [28]. Over the years, a great deal of effort has
been done to synthesize these relevant structures. Metal-catalyzed intramolecular
addition of oxygenated nucleophiles to unsaturated carbon-carbon bonds is one of
the most  innovative  approaches for  the synthesis  of such heterocycles. Zacuto
et al. [29] have developed the protocol for the synthesis of 3,4-dihydropyrans via
Ru-catalyzed  cycloisomerization  of  2-amino-4-alkyn-1-ol.  Ru-catalyzed
cycloisomerization  reaction  of  amino  alcohol  53  via  treatment  with
CpRu(PPh3)2Cl, NaHCO3, N-hydroxysuccinimide, and Bu4NPF6 in DMF at 80 °C
for  8h  resulting  in  the  synthesis  of  desired  3,4-dihydropyran  (54)  which  was
further utilized in the total synthesis of L-forosamine (57) as depicted in (Scheme
19).
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4-dihydropyrans through Ru(II)-catalyzed cyclization. The treatment of alkynals
58 with [Cp*RuCl(cod)] in presence of tri(methylsilyl)diazomethane (TMSCHN2)
yielded the desired 2-vinyl-3,4-dihydropyrans (59) as shown in (Scheme 20).
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Scheme 19. Synthesis of dihydropyran and L-forosamine 54 and 57.

Scheme 20. Synthesis of dihydropyran 59.

Radhakrishnan  et  al.  [31]  have  utilized  diazanorbornene  systems  bearing  a
flexible  hydroxy  group  in  Lewis  acid-catalyzed  intramolecular  rearrangement
giving  cyclopentannulated  dihydro-2H-pyrans.  The  synthetic  methodology
involved  the  treatment  of  diazabicyclic  alkene  60  with  Sc(OTf)3  in  toluene  to
yield  the  desired  tetrahydrocyclopenta[b]pyrans  (61)  in  good  yields  via
intramolecular  cyclization  (Scheme  21).
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carbonyl group of the diazabicyclic alkene 60 to generate the intermediate 62 with
subsequent cleavage of the adjacent C-N bond to yield a transient allylic cationic
species  63.  Intramolecular  cyclization  via  nucleophilic  attack  by  the  hydroxyl
group gave the fused tetrahydrocyclopenta[b]pyran (61) as depicted in (Scheme
22).
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Scheme 21. Synthesis of tetrahydrocyclopenta[b]pyrans 61.

Scheme 22. Mechanistic pathway for the formation of 61.
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formation  of  1,2,3-trisubstituted  trans-piperazine-5,6-diones  (65)  in  good  to
excellent  yields  as  shown  in  (Scheme  23).

Scheme 23. Synthesis of piperazine-5,6-diones 65.

De  Kimpe  et  al.  [32]  have  also  described  the  potential  of  acid-promoted
amidolysis  of  azetidin-2-one  66  for  the  synthesis  of  chiral  piperazines  68.  The
reaction involved an initial imination of azetidin-2-ones 66 with primary amines
with subsequent reduction using NaBH4 in ethanol to afford the bicyclic β-lactams
67. The acid-promoted amidolysis of β-lactam ring was done by using HCl gas in
MeOH  to  yield  methyl  (R)-[(S)-piperazin-2-yl]acetates  (68)  as  depicted  in
(Scheme  24).
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Scheme 24. Synthesis of chiral piperazines 68.

FUSED HETEROCYCLIC SCAFFOLDS

Fused Heterocycles with One Hetero Atom

Indole,  Indoline,  Quinolone,  Isoquinolone,  Isoquinoline  and  Cyclic  nitrone-
based scaffolds

3-Acylindoles constitute important core structures in scaffolds with biological and
pharmaceutical importance [33]. For example, Pravadoline (Fig. 1, I) marketed as
an anti-inflammatory and analgesic drug. Ramosetron (Fig. 1, II) has been used as
a serotonin 5-HT3 receptor antagonist for the treatment of nausea and vomiting.
3-Aroylindole compound BPR0L075 (Fig. 1, III) exhibits potent in vitro activity
against a variety of human tumor cell lines. Consequently, the development of an
efficient method for the synthesis of 3-acylindoles has become a subject of great
interest [34].

Fig. (1). Compounds having 3-acylindoles.
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Zhou  et  al.  [35]  have  recently  developed  the  protocol  for  the  simultaneous
formation  of  C-C  and  C-O  bonds  through  an  intramolecular  oxidation  of  O-
alkynylated  N,N-dialkylamines  to  result  in  the  synthesis  of  3-acylindoles.  The
synthetic approach involved the irradiation of N,N-dibenzyl substituted substrates
69  in  DMSO  with  5W  blue  LED  in  the  presence  of  photocatalyst
Ir(ppy)2(dtbbpy)PF6  resulting in the synthesis of 3-acylindoles (70).  It  has been
found  that  when  the  reaction  was  carried  out  in  the  1:1  mixture  of  MeCN and
DMSO,  the  transformation  proceeded  quite  smoothly  in  16h,  with  reduced
amount  of  catalyst  (Scheme  25).

Scheme 25. Synthesis of 3-acylindoles 70.

Mechanistically, it has been found that the photoexcitation of Ir(III) by visible-
light generated excited Ir(III)*. Further, single-electron transfer (SET) took place
from  substrate  69  to  Ir(III)*  generating  Ir(II)  and  radical  cation  71,  which
underwent facile deprotonation to give α-amino alkyl radical 72. Intramolecular
addition of radical 72 to C-C triple bonds occurred to produce vinyl radical 73.
Intermediate 73 was captured by oxygen, leading to the formation of superoxide
radical 74 which was reduced by Ir(II), regenerating the Ir(III) catalyst along with
concomitant  formation  of  intermediate  75.  Another  possible  route  to  access  75
was  the  regeneration  of  Ir(III)  via  aerobic  oxidation,  followed  by  addition  of
superoxide radical anion O2

•− to vinyl radicals 73. Finally, the protonation of 75
gave  vinyl  hydrogen  peroxide  76  where  intramolecular  abstraction  of  the
hydrogen  atom  afforded  the  3-acylindoles  (70)  as  depicted  in  (Scheme  26).
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Scheme 26. Mechanistic pathway for the formation of 70.

Yu  and  co-workers  [36]  have  envisioned  the  copper-catalyzed  intramolecular
Ullmann C-N coupling reaction of 1,3-bis(2-iodoaryl)propan-2-amines with (R)-
BINOL-derived ligands leading to the enantioselective formation of indolines and
1,2,3,4-tetrahydroquinolines.  Thus,  the  reaction  of  ethyl  2-(2-iodobenzyl-
-2-amino-3-(2-iodophenyl)propanoate 77 with 10 mol% CuI in presence of (R)-
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BINOL-derived ligand in  1,4-dioxane at  room temperature,  yielded the desired
product  indoline  (78)  in  54%  yield  with  40%  ee.  The  reactions  were  repeated
under the same conditions by utilizing ligands having bulky aryl substituents in
the 3,3-positions of the BINOL, which however did not improve the conversion
ratio.  It  was  observed  that  the  ligands  which  bearing  electron-withdrawing
trifluoromethyl groups in the aryl rings, accelerated the reaction rate and afforded
the  desired  product  78  in  relatively  higher  yields  due  to  enhancement  of  the
acidity of the ligand which facilitates deprotonation and coordination with CuI.
Based  on  these  observations,  two  ligands  bearing  bulkier  substituents  at  3,3′-
positions than previous ligands were utilized for the reaction. It has been found
that  the  CuI-L-catalyzed  reaction  proceeded  very  smoothly  and  afforded  the
desired product in both high yields and with good enantioselectivity. A range of
solvents such as MeCN, THF, and toluene were explored with the best result in
terms of enantioselectivity was observed using 1,4-dioxane. Cs2CO3 was proved to
be the best base to accelerate the reaction rate. Further, the synthesized indoline
was utilized in the synthesis of spirocyclic compound (81) as shown in (Scheme
27).

Scheme 27. Synthesis of indoline 81.
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Encouraged by the success of enantioselective synthesis of chiral indolines, the
above  methodology  was  further  explored  for  the  enantioselective  synthesis  of
1,2,3,4-tetrahydroquinoline  derivatives  as  depicted  in  (Scheme 28).  It  has  been
found that 82a and 82b could undergo desymmetrization easily with 20 mol% CuI
as  catalyst  and  40  mol%  L,  to  afford  the  corresponding  1,2,3,4-
tetrahydroquinolines  83a  and  83b  bearing  quaternary  chiral  centers  with  high
yields and excellent enantioselectivity.

Scheme 28. Synthesis of tetrahydroquinoline 83.

4-Aryltetrahydroisoquinolines  have  been  found  to  exhibit  important  biological

Tummanapalli  and co-workers  [38]  have recently  explored the protocol  for  the
synthesis  of  4-substituted  tetrahydroisoquinolone  via  scandium(III)  triflate-
promoted  intramolecular  ring  expansion  of  aziridines.  The  synthetic  approach
involved the treatment of N-benzyl azridines 84 with 1.2 equiv of Sc(OTf)3 in 1,2-
dichloroethane  at  90  °C  for  1h  resulting  in  synthesis  of  corresponding  4-
substituted  tetrahydroisoquinolones  (85)  as  shown  in  (Scheme  29).
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properties  [37], for  example,  Nomifensine  (Fig. 2,  IV)  and  Dichlorofensine
(Fig. 2, V) are effective inhibitors of reuptake of central neurotransmitters such as
Serotonin, Norepinephrine, and dopamine at postsynaptic receptors.
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Fig. (2). Nomifensine and Dichlorofensine having 4-aryltetrahydroisoquinolines moiety.

Scheme 29. Synthesis of tetrahydroisoquinolones 85.

Quinoline-4-ones,  because  of  their  synthetic  accessibility  and  possibility  of
functionalization  at  different  positions  of  the  molecule,  exemplify  an  attractive
platform  for  the  design  of  combinatorial  libraries  of  functionally  enriched
scaffolds with a range of pharmacological profiles. Kumar et al. [39] utilized β-
lactam  synthon  protocol  for  single-pot  synthesis  of  quinolin-4(3H)-ones.  The
synthetic  methodology involved the  treatment  of  trans  3-butadienyl-azetidin-2-
ones 86 with 1.0 mmol of trifloromethanesulphonic acid (triflic acid) in dry 1,2-
dichloroethane at 0oC for 10-15 min affording 3-(but-2-enylidene)-2-arylquinolin-
4(3H)-one (87) as depicted in (Scheme 30).

N
H

NH2

N
Me

Cl
ClMeO

IV
V

Nomifensine
Dichlorofensine

Sc(OTf)3, DCE

90  C, 1h NH

Ar

84
85

N

Ar

R

R

Ar = 3,4-Cl2-C6H3, 3-Cl-C6H4, 4-Cl-C6H4, 4-F-C6H4,  
       3-F-C6H4
R = 3-CH3, 3,5-(OCH3)2, 3,4,5-(OCH3)3, piperonyl

66-84%

°

 

    
    

  A
uth

or'
s  

Cop
y 

Not 
for

 S
ale

 or
 D

ist
rib

uti
on



Intramolecular Cyclization Reactions Advances in Organic Synthesis, Vol. 9   95

Scheme 30. Synthesis of quinolin-4(3H)-ones 87.

The above methodology has been further  extended to 3-vinyl/isopropenyl-1,  4-
diaryl-azetidin-2-ones  88  as  substrate  and  resulted  in  the  formation  of  C-3
functionalized  quinolin-4(1H)-ones  (89)  and  (90).  The  treatment  of  C-3
vinyl/isopropenyl-β-lactams 88 with 1.0 mmol of trifluoromethanesulphonic acid
(triflic acid) in dry chloroform at 0°C for 6h resulted in the formation of a mixture
of  3-ethylidene-2-aryl-2,3-dihydro-1H-quinolin-4-ones  (89)  and  3-vinyl-2-aryl-
2,3-dihydro-1H-quinolin-4-ones (90) [40] as depicted in (Scheme 31).

Scheme 31. Synthesis of quinolin-4(3H)-ones 89 and 90.

Mechanistically,  the  initially  protonation  of  3-vinyl/isopropenyl-β-lactam  88
generated  the  carbenium  ion  intermediate  92  which  underwent  Fries
rearrangement  via  an  ortho  attack  of  the  aromatic  substituent  on  the  nitrogen
atom,  resulting  in  a  ring  expanded  intermediate  93.  The  aromatization  of  93
accompanied  by  proton  abstraction  generated  the  intermediate  94  which
underwent  [1,  5]  sigmatropic  shift  or  tautomerization  yielding  a  mixture  of  3-
ethylidene/isopropylidene-2-aryl-2,3-dihydro-1H-quinolin-4-ones  (89)  and  3-
vinyl/isopropenyl-2-aryl-2,3-dihydro-1H-quinolin-4-ones  (90)  respectively,  as
shown  in  (Scheme  32).
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Scheme 32. Mechanistic pathway for the formation of 89 and 90.

Interestingly,  the  similar  reactions  when  carried  out  under  reflux  in  dry
chloroform led to the exclusive formation of  89  in  excellent  yields without  the
formation of 90 even in traces due to the higher thermodynamic stability of 89 as
compared to 90 at higher temperature because of the presence of conjugation in
89 (Scheme 33).

Scheme 33. Exclusive formation of 89 as compared to 90.
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A  convenient  protocol  for  the  diastereoselective  synthesis  of  substituted
hexahydroisoquinolines  and  hexahydroisoquinolones  via  inter/intramolecular
amidolysis of C-3 functionalized β-lactam ring was reported by Kumar and co-
workers  [41].  The  treatment  of  β  -lactam  synthon  precursor  95  with  sodium
methoxide at 60 °C for 1 h resulted in the isolation of corresponding hexahydro-
isoquinoline-4-carboxylic acid methyl esters (96) as depicted in (Scheme 34).

Scheme 34. Synthesis of hexahydroisoquinolines 96.

Mechanistically,  the  reaction  proceeded  via  methoxide-promoted  β-lactam ring
amidolysis  to  result  in  the  corresponding  β-aminoesters  97  in  situ,  which
underwent  intramolecular  nucleophilic  addition  with  the  aldehydic  carbonyl
followed  by  dehydration  to  afford  the  corresponding  hexahydro-isoquinoline-
4-carboxylic  acid  methyl  esters  (96)  as  shown  in  (Scheme  35).

Further,  acid promoted β-lactam ring amidolysis was also carried out affording
hexahydro-isoquinoline-4-carboxylic acid ethyl esters (98) as shown in (Scheme
36).

The  diastereoselective  synthesis  of  functionalized  hexahydro-2H-isoquinoline-
3-ones  (101)  was  developed  by  Kumar  and  co-workers  via  NaBH4-promoted
intramolecular ring amidolysis of 95.  The synthetic protocol involved an initial
condensation reaction of 95 with primary amines via p-toluidine/cyclohexylamine
to generate the corresponding imine which was reduced in situ by the addition of
sodium borohydride (NaBH4) leading to the formation of desired hexahydro-2H-
isoquinoline-3-ones (101) without the isolation of corresponding amines. (Scheme
37)
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Scheme 35. Mechanistic pathway for the formation of 96.

Scheme 36. Synthesis of hexahydroisoquinoline 98.
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Scheme 37. Synthesis of hexahydroisoquionolones 101.

Apart  from  its  well  established  potential  to  undergo  1,3-dipolar  cycloaddition,
cyclic nitrones constitute an important class of heterocyclic scaffolds with myriad
of biological and therapeutic activities including antitumor, neuroprotective, anti-
stroke, suppression of age-associated degeneration and as spin trapping reagents
in the identification of transient radicals. Thus, β-lactam synthon precursor 95 was
utilized  for  the  synthesis  of  six  membered  cyclic  (E)-endo-aldonitrones  (103)
[42]. The key step in the synthesis involved the refluxing of C-3 functionalized
β-lactam 95 with a solution of hydroxyl amine hydrochloride and sodium acetate
resulting  in  the  isolation  of  diastereoselective  six  membered  cyclic  (E)-endo-
aldonitrones (103) via intermediate 102, which was further explored in 1,3-dipolar
cycloaddition reactions with dimethylacetylene dicarboxylate (DMAD) leading to
the  isolation  of  corresponding  2-oxo-3-[3-oxo-4-(aryl-arylamino-methyl)-
3,4,4a,7,8,8a-hexahydro-2H-isoquinolin-1-ylidene]-succinic  acid  dimethyl  ester
(105) as shown in (Scheme 38).

Carbazole-based Scaffolds

Carbazole  motif  has  drawn  the  attention  of  chemists  due  to  its  various
applications such as bioactive alkaloids [43, 44] (Fig. 3) and electronic materials
[45]. Therefore new synthetic methods are highly desirable for the preparation of
carbazoles.  Chang  et  al.  [46]  have  reported  the  synthesis  of  carbazoles  via
intramolecular  oxidative  C-N  bond  formation  of  N-substituted  amidobiphenyls
under Cu-catalyzed conditions using hypervalent iodine(III) as an oxidant.
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Scheme 38. Synthesis of (E)-endo-aldonitrones 103.
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Fig. (3). Biologically active alkaloids having carbazole moiety.

A range of catalysts as well as oxidants were employed to optimize the reaction
conditions.  Thus,  the  reaction  of  2-acetamidobiphenyl  106a  with  copper(II)
triflate as catalyst and PhI(OAc)2 as an oxidant gave the desired N-acetylcarbazole
(107a). An improvement in the yields was observed by replacing N-acetyl with
N-sulphonyl group along with addition of trifluoroacetic acid. However best result
in  term of  yield  was  obtained  using  Cu(OTf)2  as  catalyst  and  PhI(OAc)2  as  an
oxidant.  Furthermore,  the  introduction  of  electron-donating  substituent  at  N-1
(e.g.106c)  deteriorated  the  reaction  yield  as  depicted  in  (Scheme  39).

Scheme 39. Synthesis of N-acetylcarbazole 107.
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Mechanistically, it has been found an aromatic cation radical 109 was generated
by  a  single  electron  transfer,  through  a  charge-transfer  π-complex  108.  It  was
demonstrated that aromatic cation radicals can be introduced when hypervalent
iodine(III)  reagents  react  with  electron-rich  arenes  such  as  para-substituted
phenol,  ethers  and  thiophenes  derivatives  where  subsequent  trapping  of  the
aromatic cation radicals has been done with certain nucleophiles such as TMSN3
or mesitylene to yield the corresponding carbazoles (107) as depicted in (Scheme
40).

Scheme 40. Mechanistic pathway for the formation of 107.

Mohanakrishnan  and  co-workers  [47]  have  developed  the  synthetic  route  for
indolocarbazole  analogs  via  nitrene  insertion  and  thermal  electrocyclization
reactions. The synthetic protocol involved the triethylphosphite-mediated nitrene
insertion to carbazole 110 in the presence of 1 equiv of ZnBr2 at 90-95°C for 12-
15  h  resulting  in  the  formation  of  the  corresponding  indolocarbazoles  (111)  as
depicted in (Scheme 41).

Scheme 41. Synthesis of indolocarbazole 111.

Further,  consecutive  electrocyclization  and  nitrene  insertion  reaction  has  been
carried out with 2-azidophenylvinylindole 113 in o-DCB in the presence of 10%
Pd-C affording the desired indolocarbazole (114) as show in (Scheme 42).
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Scheme 42. Synthesis of indolocarbazole 114.

Nishiyama  et  al.  [48]  have  explored  new  synthetic  route  for  carbazoles  via
oxidative  cyclization  of  diaryl  derivatives  with  electrochemically  generated
hypervalent iodine oxidant. The key step in the synthesis involved the reaction of
corresponding diaryl derivatives 115 with PhI(OCH2CF3)2 in TFE resulting in the
formation  of  mixture  of  carbazoles  (116)  and  (117),  the  ratio  being  dependent
upon the substituents attached to aromatic rings (Scheme 43).

Scheme 43. Synthesis of carbazole 116 and 117.

Mechanistically,  the  SN2  attack  of  the  amide  oxygen  to  the  oxidant  gave  the
imidate-type intermediate 118, with subsequent intramolecular nucleophilic attack
from the adjacent aromatic ring to achieve the desired cyclized product (116) as
shown in (Scheme 44).
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active natural products [49]. 2-Substituted 4H- 3,1-benzoxazin-4-ones have been
reported  to  act  as  chymotrypsin  inactivators,  inhibitors  of  human  leukocyte
elastase and serine proteases as shown in (Fig. 4). In this regard, their syntheses
have attracted much interest from both organic and pharmaceutical chemists.

Scheme 44. Mechanistic pathway for the formation of 116.

Fig. (4). Bioactive compounds containing 4H-3,1-benzoxazin-4-one moiety.

Du and co-workers [50] have developed a new approach for the construction of
4H-3,1-benzoxazin-4-ones via TBHP/CoCl2-mediated intramolecular oxidative C-
O bond forming reaction. The synthetic methodology involved the treatment of
substituted  N-(2-formylphenyl)benzamide  119  with  CoCl2  (0.1  equiv)  as  the
catalyst  and TBHP (5.0  equiv)  as  oxidant  in  MeCN under  refluxing conditions
affording substituted 4H-3,1-benzoxazin-4-one (120) in good yield as shown in
(Scheme 45).

Mechanistically,  it  was  observed  that  the  bond  dissociation  of  TBHP  gave  the
tert-butoxy  and  hydroxy  radicals,  which  upon  treatment  with  A,  generating
intermediate  B.  Further,  the  abstraction of  hydrogen from aldehyde 119  by  the
tert-butoxy radical resulting in formation of acyl radical 121, which underwent a
carbon-oxygen bond forming reaction to result in another radical 122. A second
hydrogen abstraction from 122 by the hydroxy radical, which was released when
B  was  converted  back  into  A,  led  to  the  desired  product  120  along  with  the
generation  of  CoII  and  one  molecule  of  H2O  (Scheme  46).
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Scheme 45. Synthesis of benzoxazin-4-one 120.

Scheme 46. Mechanistic pathway for the formation of 120.

Benzothiazine, an important heterocyclic scaffolds having benzene ring attached
to the six-membered heterocyclic thiazine has attracted the attention of organic
medicinal  chemists  due  to  their  various  pharmacological  activities.  Various
benzothiazine-based  compounds  have  been  reported  to  act  as  potent  anti-
inflammatory agents. For example, well known anti-inflammatory drugs such as
meloxcicam (Fig. 5, XIV) and piroxicam (Fig. 5, XV) belong to this category of
compounds.

Pal  et  al.  [51]  recently  explored  the  AgNO3-promoted  the  intramolecular  ring
closure  of  o-(1-alkynyl)benzenesulfonamides  via  a  regioselective  C-N  bond
forming  reaction  leading  to  the  formation  of  3-substituted  benzothiazine
derivatives. The synthetic investigation involved the intramolecular cyclization of
o-(1-alkynyl)benzenesulfonamides 123 with AgNO3 in DMF at 80 °C resulting in
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the synthesis of corresponding 3-substituted benzothiazines (124) as depicted in
(Scheme 47).

Fig. (5). Anti inflammatory drugs containing benzothiazine moiety.

Scheme 47. Synthesis of benzothiazines 124.

Mechanistically,  it  was  proposed  that  Ag-salt  activated  the  triple  bond  of  123
forming  σ  complex  125.  The  intereaction  of  σ  complex  with  DMF  via  the
formation of S–N–H---O=C hydrogen bond which enhanced the nucleophilicity of
the  sulfonamide  nitrogen.  Further,  regioselective  intramolecular  nucleophilic
attack of the sulfonamide group to the Ag-coordinated triple bond in a ‘6-endo
dig’  fashion  provided  the  Ag-vinyl  species  126  which  underwent  subsequent
protonation  regenerating  the  catalyst  and  afforded  the  desired  product  (124)  as
depicted in (Scheme 48).

Jiang and co-workers [52] have recently developed a protocol for the synthesis of
substituted 1,4-benzothiazine derivates  via  Pd-catalyzed coupling reaction.  The
important feature of this method was the use of Na2S2O3.5H2O (Sodium thiosulfate
pentahydrate) as sulfurating reagent which made it free from foul-smelling thiols.
The synthetic methodology involved the reaction of 127 with PdCl2(dppf) in the
presence of Na2S2O3.5H2O yielding benzothiazine (128).  Best results in term of
yields was obtained when additional 5 mol% dppf was used with PdCl2(dppf) in
presence of Na2S2O3 in a MeCN:H2O (20:1) mixture as show in (Scheme 49).

S
N

CH3
O O

OH

N
H

O

N

S

S
N

CH3
O O

OH

N
H

O N

Meloxcicam Piroxicam
XIV XV

 

R1
R2

S
NHCH3

O O

AgNO3

DMF, 80  C S
N

CH3

R2R1

O O

123
124

77-80%

°

 

    
    

  A
uth

or'
s  

Cop
y 

Not 
for

 S
ale

 or
 D

ist
rib

uti
on



Intramolecular Cyclization Reactions Advances in Organic Synthesis, Vol. 9   107

Scheme 48. Mechanistic pathway for the formation of 124.

Scheme 49. Synthesis of 1,4-benzothiazine 128.

mono-chloro-β-lactams 130 as synthetic precursor. The reaction of 130a-e with 2
equiv  of  sodium  methoxide  in  dry  methanol  afforded  the  4,5-dihydro-1-
4-benzothiazepines  (131a-c)  while  the  treatment  with  5  equiv  of  sodium
methoxide  led  to  the  formation  of  indolo-1,4-benzothiazepines  (135a-e).
Mechanistically,  the  formation  of  135a-e  is  thought  to  proceed  via  an  initial
alcholysis  of  β-lactam  ring  to  yield  the  corresponding  α-chloro  ester  with
subsequent tandem dehydration [1,  5] sigmatropic shift  as depicted in (Scheme
50). Sulphur extrusion in refluxing DMF of 135a-e finally resulted in the isolation
of alkaloid type indolo [3,2-c] isoquinolines (137a,b,d) in good yields.
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Fodor and co-workers [53] have reported the synthesis of substituted 4,5-dihydro-
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Scheme 50. Synthesis of benzothiazepines 137.
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1,4-Benzodiazepin-2-ones  (BZD)  are  a  very  successful  class  of  drugs  and
extensively employed in the context of their wide range of biological activities.
There  have  been  significant  revelations  in  the  synthesis  of  C-3  functionalized
BZD  [54]  due  to  their  significant  potency  at  C-3  position.  Benzodiazepines
having  latent  functionalities  at  C-3  position  have  shown potential  in  medicinal
chemistry  and  thus  attracted  the  urgency  of  synthetic  chemists  for  the
development of new preparatory routes. Bhargava and co-workers [55] developed
β-lactam  synthon  mediated  strategy  for  facile  and  chemoselective  synthesis  of
new 1,4-benzodiazepin-2-ones. The synthetic methodology involved the treatment
of 2-(2-aminoaryl)-3-(azetidin-3-yl)thiazolidin-4-ones (138) having 2-aminoaryl
at the C-2 position of the thiazolidinone with sodium methoxide in methanol to
afford 1H-benzo[e] [1, 4]diazepin-2(3H)-ones (139) as show in (Scheme 51).

Scheme 51. Synthesis of benzodiazepin-2-ones 139.

Mechanistically, the reaction involved an initial alkoxide-promoted cleavage of
the  N1-C2  bond  of  the  β-lactam ring  to  yield  unstable  intermediate  140  which
underwent  a  quick  deamination  reaction  under  basic  condition  to  form  the
corresponding dienyl thiazolidin-4-ones 141. Further, intramolecular nucleophilic
addition of the aryl amino group of 141 to the carbonyl carbon of the ester moiety
afforded intermediate 142. Methoxide-promoted ring opening of thiazolidinone of
142  with  the  removal  of  the  thioglycolic  acid  resulted  in  desired  benzo[e]  [1,
4]diazepin-2(3H)-one 140 as shown in (Scheme 52).
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Scheme 52. Mechanistic pathway for the formation of 139.

Quinazolinone-based Scaffold

Quinazolinone  represent  one  of  the  most  important  pharmacophores  exhibiting
central nervous system, cardiovascular and anti-inflammatory activities and also
act as a psychotropic, hypnotic, cardiotonic, or antihistamine agent [56]. Although
the significance of these compounds is obvious,  only a few synthetic strategies
have been developed for  the construction of  this  skeleton.  Thus,  Du et  al.  [57]
have explored the synthesis of N-aryltetrahydroisoquinoline compounds through
intramolecular cross-dehydrogenative coupling reactions. The synthetic approach
involved the treatment of  N-aryltetrahydroisoquinoline 144  with an appropriate
hypervalent  iodine  reagent  phenyl  iodine(III)  diacetate  (PIDA)  in  methanol  at
room  temperature  yielding  the  corresponding  cyclized  product  quinazolinones
(145) in a satisfactory yields. It has been found that additives have pronounced
effect  on  the  yield  of  the  reaction.  When  BF3·Et2O  or  TMSOTf  was  used  as
additive, the yield of 145 remain unchanged while1.2 equiv of NaN3 resulted in
satisfactory yield (Scheme 53).
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Scheme 53. Synthesis of quinazolinones 145.

Mechanistically,  it  was  found  that  highly  reactive  azidoiodinane,  PhI(N3)OAc,
was formed via.  SN2  reaction of phenyl iodine(III) diacetate (PIDA) with azide
anion. Further, reaction of 144 with PhI(N3)OAc resulted in the formation of the
ammonium ion intermediate 148 which underwent an E2 reaction in the presence
of  acetate  anion  furnishing  the  iminium  ion  intermediate  149,  along  with  the
generation  of  one  molecule  of  iodobenzene  and  acetic  acid.  Intramolecular
nucleophilic  cyclization  on  iminium  intermediate  149  with  the  abstract  of
hydrazoic acid, resulted in the desired product 145 as depicted in (Scheme 54).

Scheme 54. Mechanistic pathway for the formation of 145.
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The  above  protocol  when  tested  with  tetrahydroisoquinoline-N-benzoic  acid
derivatives  150,  afforded  the  desired  lactones  (151)  in  good  yield  through  the
formation of a new C-O bond (Scheme 55).

Scheme 55. Synthesis of lactones 151.

Fused Heterocycles with Three Hetero Atom

Benzotriazole-based Scaffold

Benzotriazole  is  another  fused  heterocyclic  compound  having  three  vicinal
nitrogen atoms in its  five-member ring.  These nitrogen-containing heterocycles
are extensively found in pharmaceuticals and are structural components of many
UV  stabilizers  and  organic  electronic  materials  [58].  Especially,  2-aryl-2H
benzotriazole  core  is  present  in  various  scaffolds  such  as  seratonine/dopamine
receptor  ligand  (XVI),  human  PPAR-αactivator  (XVII),  Tinuvin-P  (XVIII)  an
ultraviolet light absorber, PCDTPBt (XIX) an electron acceptor in organic solar
cell, an ultraviolet light stabilizer (XX), and antiviral agent (XXI) against ssRNA
positive viruses as shown in (Fig. 6).

Patel and co-workers [59] have recently developed an efficient and regioselective
route for the synthesis of 2-aryl-2H-benzotriazoles via Pd(II)-catalyzed ortho sp2

C-H activation of azoarenes using TMSN3 as the nitrogen source and TBHP as the
oxidant.  The  key  step  in  the  synthesis  is  the  treatment  of  azoarenes  152  with
TMSN3 and TBHP (oxidant) in DMSO at 100 °C to result in corresponding 2H-
benzotriazoles (153) in good yields as depicted in (Scheme 56).
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Fig. (6). Compounds having 2-aryl-2H-benzotriazoles core with its importance.

Scheme 56. Synthesis of benzotriazole 153.
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Mechanistically,  the  cyclopalladation  reaction  between  “azo  moiety”  of
azobenzene and Pd(II) catalyst led to the generation of intermediate complex 154.
Azide radical, obtained by the reaction of TMSN3 and TBHP in situ reacted with
Pd-complex  156  and  oxidized  it  to  give  Pd(III)  intermediate  155  which  on
oxidation  with  TBHP  leading  to  the  formation  of  a  Pd(IV)  intermediate  156.
Thus, TBHP was playing the dual role of an oxidant as well as a radical generator.
The reductive elimination of intermediate 156 led to the generation of an o-azido
azobenzene 157, regenerating palladium(II) catalyst for the next cycle. In the final
stage, attack of one of the azo nitrogen onto the o-azide nitrogen in situ generated
ortho azido substrate 157 and resulted in the desired cyclization product 153, with
the expulsion of a molecule of N2 as depicted in (Scheme 57).

Scheme 57. Mechanistic pathway for the formation of 153.
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CONCLUDING REMARKS

Metal catalyzed intramolecular cyclization and β-lactam-synthon protocol are two
diverse  synthetic  approaches  with  one  common  goal  of  constructing  diverse
heterocycles with latent functionalities. A number of examples explicating their
potential in the intramolecular construction of C-X (X = N, O, S) bond has been
included in the present chapter which will help the readers to appreciate their role
in  modern  day  organic  synthesis.  We  believe  that  more  variants  of  the  above
protocols  will  be  reported  in  future  which  will  facilitate  the  synthesis  of
structurally  arduous  heterocycles  of  biological  and  medicinal  interest.
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